Article - 27/07/2022

Citio

Nos algorithmes sont reconnus par la communauté scientifique ! 

Nos algorithmes sont reconnus par la communauté scientifique ! 

Nous sommes heureux•ses et fier•ères de vous annoncer que le papier de recherche « A Bayesian Markov Model for Station-Level Origin-Destination Matrix Reconstruction », rédigé par notre équipe R&D, a récemment été sélectionné pour être présenté lors de l’ECML PKDD*, l’une des principales conférences académiques dans le domaine de l’apprentissage automatique et de la gestion des connaissances.

Dans quel contexte s’inscrit le modèle ?

Le modèle s’inscrit dans le cadre de l’amélioration de la reconstitution des Origine-Destination (O-D) via les validations billettiques, qui consiste à reconstruire le flux de passagers qui ont voyagé d’une station (origine) à une autre (destination) pendant une période donnée. Les O-D peuvent être représentées dans une matrice qui permet de visualiser les flux pour toutes les paires possibles de stations sur le réseau, c’est-à-dire d’associer les stations d’entrée et les stations de sorties des voyageurs. 

Les matrices O-D sont très utilisées par les acteurs du transport public pour comprendre les habitudes de déplacements des personnes sur un territoire donné, et calculer divers indicateurs concernant l’état et les performances du réseau tels que l’occupation des véhicules et le comportement des voyageurs. 

A quoi sert le modèle ? 

Le modèle permet d’affiner la matrice O-D lorsqu’il est impossible de chaîner certaines validations. 

En effet, tous les voyageurs valident avec un ticket ou une carte d’abonnement lors de l’embarquement dans un véhicule. Les détenteurs de cartes d’abonnement vont utiliser plusieurs fois leur carte pour valider à l’entrée lors de divers trajets qu’ils vont effectuer dans la journée. Nous pouvons donc reconstituer leurs trajets en considérant que la dernière station d’embarquement était la station de débarquement du trajet précédent : c’est ce qu’on appelle le chaînage des validations. 

Mais parfois ce chaînage est impossible, notamment dans deux cas : lorsque les usagers voyagent avec des tickets unitaires, ou lorsque le comportement n’est pas compatible avec les règles spatio-temporelles de chaînage. Par exemple, pour être en capacité de chaîner les trajets, deux validations doivent être espacées de moins de 24h et reliées par une même ligne du réseau. 

C’est là que le modèle de Markov entre en jeu !

Et comment ça marche ? 

Le prérequis, pour ce modèle, est de disposer, au moins sur une partie du réseau, de cellules de comptage (matériel connecté qui détecte la présence et le sens de passage des voyageurs aux portes des véhicules). Nous avons un autre algorithme qui permet de reconstituer les O-D lorsque nous n’avons aucune cellule de comptage, mais ce n’est pas le sujet ici ! 

Le modèle combine les données de comptage par course avec les données de validation par course également, et permet ainsi de déduire avec précision la distribution des déplacements. Le modèle prend également en compte le bruit des cellules de comptage (le fait que les données remontées ne soient pas forcément exactes) et la fraude. 

Pour quels résultats ?  

Avoir un modèle construit intelligemment, c’est bien, mais vérifier qu’il marche, c’est encore mieux ! C’est pourquoi nos équipes ont réalisé des tests sur le réseau de Casablanca, en comparant les résultats du modèle avec les données réelles. 

Et le résultat est très satisfaisant ! Notre algorithme permet d’augmenter par 2 la probabilité de reconstituer la bonne station de sortie. La charge à bord des trajets est également nettement mieux reconstituée, avec moins de 2% d’erreurs.

Découvrir les grandes étapes du modèle 

Téléchargez notre infographie complète sur le sujet en remplissant le formulaire ci-dessous :

*European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases

Citio